CONDITION ASSESSMENT OF THE MECHANICAL, ELECTRIC AND PLUMBING SYSTEMS FOR

ST. MARK’S CAPITOL HILL
3RD AND A STREETS, SE
WASHINGTON, D.C.

ECS Project No. 16216

ECS Mid-Atlantic, LLC
14026 Thunderbolt Place, Suite 100
Chantilly, Virginia 20151
(703) 471-8400

March 15, 2010
March 15, 2010

Mr. Edgar Corr
OPX Architects
21 DuPont Circle, N.W.
Washington, DC 20036

ECS Project No. 16216

Reference: Report of Mechanical, Electrical, and Plumbing Systems Condition Assessment
St. Mark’s Capitol Hill
3rd and A Streets, SE
Washington, D.C.

Dear Mr. Corr:

ECS Mid-Atlantic, LLC (ECS) is pleased to present this condition assessment for the mechanical, electrical, and plumbing systems for the above-referenced project. This report includes a discussion of our field observations, as well as conclusions related to those findings.

It has been our pleasure to be of service to you on this project. Should you have any questions or comments with regard to the report, please feel free to contact us at your convenience.

Respectfully,

ECS MID-ATLANTIC, LLC

Michael G. Doyle, A.I.A., LEED AP
Senior Project Manager

Hank Brown, ScD, PE, LEED AP
Managing Principal Engineer
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Project Information</td>
<td>1</td>
</tr>
<tr>
<td>2.0 Mechanical System</td>
<td>1</td>
</tr>
<tr>
<td>3.0 Electrical System</td>
<td>4</td>
</tr>
<tr>
<td>4.0 Plumbing System</td>
<td>5</td>
</tr>
<tr>
<td>5.0 Elevator System</td>
<td>6</td>
</tr>
<tr>
<td>6.0 Life Safety System</td>
<td>7</td>
</tr>
<tr>
<td>7.0 Summary of Remedial Work Costs</td>
<td>7</td>
</tr>
<tr>
<td>Appendix I: Photographic Documentation</td>
<td></td>
</tr>
</tbody>
</table>
1.0 PROJECT INFORMATION

ECS Mid-Atlantic, LLC, (ECS) performed a condition assessment of the mechanical, electrical, and plumbing systems at St. Mark’s Capitol Hill in Washington, D.C. on February 26, 2010. Our services were performed in accordance with our Proposal No. 33068-SP, dated December 8, 2009 and authorized by you.

The scope of our services included visual observations of the Mechanical System, Plumbing System, Elevator System, and Life Safety System. Photographic documentation of conditions observed during our assessment is provided in Appendix I.

The property consists of the main church building located at the intersection of 3rd Street, SE and A Street, SE, and Baxter House, a three-story building with a basement located at 118 3rd Street, SE in Washington, D.C. We understand that the main church building was constructed in 1888 and the parish hall was constructed in 1923, and a major renovation occurred in 1990.

During the course of the assessment, we were provided with information and/or escorted through the property by the following:

- Ms. Caitlin Jacobs, St. Mark’s Church
- Mr. Charlie Rupp, St. Mark’s Church

Utilities to the buildings are provided as follows:

- Electricity – Potomac Electric Power Company
- Natural Gas – Washington Gas
- Water – DC Water and Sewer Authority
- Sanitary Sewer – DC Water and Sewer Authority

2.0. MECHANICAL SYSTEM

Church Building

The mechanical system for the church building includes split systems, radiators, and boilers. Fan units are located in mechanical rooms in the parish hall and undercroft.

Fan units are located in two mechanical rooms in the parish hall (Photograph No. 1), above the dance studio, mechanical rooms one through three in the undercroft (Photograph No. 2), and in closets F and G in the James R. Adams conference room (Photograph No. 3). The fan unit above the dance studio was not accessible; we were able to view the filters located in the changing room, and the filters were observed to be in good condition. Closet G was blocked and we were unable to access the fan unit inside. We were informed by Mr. Rupp that the fan unit in Closet G was manufactured by Bryant. We understand that the fan units were replaced during the remodel of the parish hall and undercroft in 1990. The expected useful life of a fan unit is approximately 20 to 25 years with proper maintenance. We recommend that an allowance be provided to replace the fan units.
The particulars for the air handler units observed for the split systems are presented in the following table:

<table>
<thead>
<tr>
<th>Unit Number</th>
<th>Area Located</th>
<th>Manufacturer</th>
<th>Model Number</th>
<th>Serial Number</th>
<th>Age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Undercroft</td>
<td>Rheem</td>
<td>RQHA-1600A</td>
<td>M22909012</td>
<td>20</td>
</tr>
<tr>
<td>3-A</td>
<td>Undercroft</td>
<td>Rheem</td>
<td>RQHA-200B</td>
<td>M15902915</td>
<td>20</td>
</tr>
<tr>
<td>3-B</td>
<td>Undercroft</td>
<td>Rheem</td>
<td>RQHA-2000B</td>
<td>M14903132</td>
<td>20</td>
</tr>
<tr>
<td>3-C</td>
<td>Parish hall</td>
<td>Rheem</td>
<td>RQHA-2000B</td>
<td>M13902898</td>
<td>20</td>
</tr>
<tr>
<td>3-D</td>
<td>Parish hall</td>
<td>Rheem</td>
<td>RQHA-2000B</td>
<td>M13902898</td>
<td>20</td>
</tr>
<tr>
<td>4-A</td>
<td>Closet F</td>
<td>Bryant</td>
<td>524AEB12000ABHC</td>
<td>1806X99850</td>
<td>20</td>
</tr>
</tbody>
</table>

The condenser units for the main church building are located on the south side of the building and behind the kitchen (Photograph Nos. 4 and 5). The fan units were observed to not be equipped with dryers of the refrigerant lines (Photograph No. 6 and 7). The condenser was observed to be in generally fair condition. The expected useful life of a condenser is approximately 20-25 years with proper maintenance. We recommend that an allowance be provided to replace the condensers.

The particulars of the condensers for the split systems are presented in the following table:

<table>
<thead>
<tr>
<th>Unit Number</th>
<th>Area Located</th>
<th>Manufacturer</th>
<th>Model Number</th>
<th>Serial Number</th>
<th>Age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-B</td>
<td>Exterior of parish hall</td>
<td>Rheem</td>
<td>RAFD-060CBS</td>
<td>4657M43908742</td>
<td>20</td>
</tr>
<tr>
<td>3-C</td>
<td>Behind the kitchen</td>
<td>Carrier</td>
<td>24ABR360A530</td>
<td>1906E29833</td>
<td>20</td>
</tr>
<tr>
<td>3-D</td>
<td>Behind the kitchen</td>
<td>Rheem</td>
<td>RAFD-060CBS</td>
<td>4657M43908744</td>
<td>20</td>
</tr>
<tr>
<td>4-A</td>
<td>Exterior of parish hall</td>
<td>Bryant</td>
<td>569DPX090000AA</td>
<td>130G50082</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Exterior of parish hall</td>
<td>Bryant</td>
<td>569DPX120000AA</td>
<td>1306G50082</td>
<td>20</td>
</tr>
<tr>
<td>Unknown</td>
<td>Exterior of parish hall</td>
<td>Rheem</td>
<td>RAFQ-048CBS</td>
<td>4229M43909753</td>
<td>20</td>
</tr>
<tr>
<td>Unknown</td>
<td>Exterior of parish hall</td>
<td>Rheem</td>
<td>RAWB-075CAS</td>
<td>3310G38903599</td>
<td>20</td>
</tr>
<tr>
<td>Unknown</td>
<td>Behind the kitchen</td>
<td>Rheem</td>
<td>RAFD-025JAS</td>
<td>4727M33903076</td>
<td>20</td>
</tr>
<tr>
<td>Unknown</td>
<td>Exterior of parish hall</td>
<td>Rheem</td>
<td>RAFD-060CBS</td>
<td>4657M43908743</td>
<td>20</td>
</tr>
</tbody>
</table>

Hot water radiator heaters are located throughout the church building (Photograph Nos. 8 through 10). The expected useful life of a radiator heater is approximately 35 years with proper maintenance. The radiator heaters were observed to be in generally fair condition.
The boilers are located in the undercroft of the church building (Photograph Nos. 11 and 12). The boilers are manufactured by HydroTherm, Model No. MR-1200B. The boilers were replaced in 1990 when the parish hall and undercroft were renovated. The expected useful life of a boiler is approximately 25 years with proper maintenance. The boilers were observed to be in generally fair condition. We recommend that an allowance be provided to replace the boilers.

A pump is located in the main mechanical room in the undercroft (Photograph No. 13). The pump motor was manufactured by Marathon, Model No. 7VL56T17D2100F, in October of 1990. The expected useful life of a pump is 15 years with proper maintenance. The pump was observed to be in generally fair condition. We recommend the pump be replaced.

Baxter House

The mechanical system for Baxter House includes radiators and split systems. Fan units are located in mechanical rooms in the first and third floors.

Fan units are located in the bathroom on the first floor and in a mechanical closet in the third floor (Photograph Nos. 14 and 15). The fan units were manufactured by Bryant, Model Nos. FK4CNF002 and FK4CNF003. The fan units were observed to be in generally good condition. The expected useful life of a fan unit is approximately 20 to 25 years with proper maintenance. We recommend the fan units be replaced.

The particulars for the air handler units for the split systems are presented in the following table:

<table>
<thead>
<tr>
<th>Area Located</th>
<th>Manufacturer</th>
<th>Model Number</th>
<th>Serial Number</th>
<th>Age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st floor</td>
<td>Bryant</td>
<td>FK4CNF002</td>
<td>2196A15243</td>
<td>10</td>
</tr>
<tr>
<td>3rd floor</td>
<td>Bryant</td>
<td>FK4CNF003</td>
<td>0496A11841</td>
<td>10</td>
</tr>
</tbody>
</table>

The condenser unit for Baxter House is located on the south side of the building (Photograph No. 16). The condenser unit was manufactured by Bryant, Model No. 597CN024-B, in 2000. The condenser unit was not equipped with a dryer (Photograph No. 17). The condenser was observed to be in generally fair condition. The expected useful life of a condenser is approximately 20 to 25 years with proper maintenance. The condenser is connected to both fan units, thus the system throughout the building will be on or off. We recommend the condenser be replaced with two separate units, one for each fan unit.

Hot water radiator heaters are located throughout the building (Photograph Nos. 18 and 19). The expected useful life of a radiator heater is 35 years with proper maintenance. The radiator heaters were observed to be in generally fair condition.

The boiler is located in the basement of the building (Photograph No. 20). The boiler is manufactured by Weil-McLain, Model No. CG-6-PIDN. The boiler was observed to be in generally fair condition. The expected useful life for a boiler is approximately 20 to 25 years. We recommend replacing the boiler.

A through-the-wall air conditioning unit was observed in an office on the second floor (Photograph No. 21). The air-conditioner unit is utilized to supplement the main mechanical system. A portable heater is also located in the office with the air-conditioning unit. This is a symptom of the central heating and cooling system not operating properly in the building.
The mechanical system was observed to be in generally fair to poor condition. The following recommendations are presented for the mechanical system:

Church Building
- Provide an allowance to replace the fan units.
- Provide an allowance to replace the condenser units.
- Provide an allowance to replace the boilers.

Baxter House
- Replace the fan units.
- Replace the condenser with two separate units.
- Replace the boiler.

3.0 ELECTRICAL SYSTEM

Church Building

Electricity is provided to the church building by Potomac Electric Power Company (PEPCO). The main entrance and switchgear for the church is located in the undercroft (Photograph Nos. 22 and 23). The main switchgear provides 4,000 amps, 3-phase, 4-wire service. The electrical meters are located next to the switchgear in the electrical room. Power is distributed to circuit breaker panels located throughout the church (Photograph No. 24 and 25).

An open electrical box was observed in the mechanical room in the parish hall (Photograph No. 26). Open switches and damaged electrical outlets were observed throughout the building (Photograph Nos. 27 and 28). We recommend providing an allowance for electrical repairs.

An emergency power panel is located in the electrical room in the undercroft (Photograph No. 29). The panel serves the fire alarm system and emergency lighting.

The electrical lighting throughout the main church building generally consists of incandescent and fluorescent fixtures (Photograph No. 30). The lighting was observed to be in generally good condition.

Baxter House

Electricity is provided to Baxter House by PEPCO. The main electrical entrance for Baxter House is in the basement (Photograph No. 31). Holes here observed in the main electrical panel (Photograph No. 32). In the main electrical panel, both copper and aluminum wires were observed. Open wire was also observed in the panel (Photograph No. 33). The screws holding the door for the panel were missing.

An open electrical box was observed on the ceiling of the basement (Photograph No. 34). Open wires were observed in the box. Numerous wires were observed to have fabric casings that may contain hazardous materials.
The electrical lighting throughout Baxter House generally consists of incandescent fixtures (Photograph No. 35). The electrical outlets and switches were observed to be in generally fair condition (Photograph No. 36). The lighting was observed to be in good condition. The outlet adjacent to the sink in Baxter House was not equipped with a ground fault circuit interrupter (GFCI) outlet. We recommend that a GFCI outlet be installed as a maintenance item.

The electrical system was observed to be in generally fair to poor condition. The following recommendations are presented for the electrical system:

Church Building
- Provide an allowance for electrical repairs.

Baxter House
- Upgrade the electrical system.

4.0 PLUMBING SYSTEM

Church Building

The plumbing system in the main church building includes copper water supply piping and cast iron and polyvinyl chloride (PVC) waste piping (Photograph No. 37). Leaks were observed in pipes in the undercroft (Photograph No. 38 and 39). The plumbing pipes were observed to be in generally fair to poor condition. We recommend that an allowance be provided to replace the deteriorated plumbing pipes.

Hot water for the church is provided by two water heaters. The water heaters are located in the kitchen of the parish hall and main mechanical room in the undercroft (Photograph Nos. 40 and 41). The water heater in the kitchen was observed to be manufactured by State, Model No. G5650YBRT. The water heater in the undercroft was manufactured for Bradford-White, Model No. M-I-73775BN. A compression tank manufactured by PACO, Model No. CAX170 (Photograph No. 42) is located adjacent to the water heater in the undercroft. The water heater in the kitchen was manufactured in October of 2009 and was observed to be in good condition. The water heater in the undercroft was manufactured in September of 1990 and was observed to be in generally fair condition. The expected useful life of a water heater is approximately 15 years. We recommend the water heater in the undercroft be replaced.

The natural gas entrance and meter are located in the undercroft of the building (Photograph No. 43). The natural gas is provided by Washington Gas. The meter was observed to be in generally fair condition.

Baxter House

The plumbing system at Baxter House includes copper water supply piping and cast iron and PVC waste piping (Photograph Nos. 44 through 48). The plumbing pipes were observed to be in generally poor condition with previous leaks observed in the restrooms. A damaged drain was observed on the south side of the building (Photograph No. 49). We recommend that the area around the drain be repaired. We recommend that the plumbing pipes be replaced.
Hot water for the building is provided by a water heater located in the basement (Photograph No. 50). The water heater was observed to be manufactured by A.O. Smith. The expected useful life of a water heater is 15 years with proper maintenance. The water heater was observed to be in generally fair condition. We recommend an allowance be provided to replace the water heater.

A sump pump is located in the basement of the building (Photograph No. 51). The sump pump was observed to be in generally fair condition. We recommend an allowance be made to replace the sump pump.

The natural gas entrance and meter are located in the basement of the building (Photograph No. 52). The natural gas is provided by Washington Gas. The meter was observed to be in generally fair condition.

The plumbing system and the various components were observed to be in generally fair condition. The following recommendations are presented for the plumbing system:

Church Building
- Provide an allowance to replace deteriorated plumbing pipes.
- Replace the water heater in the undercroft.
- Replace the booster pump.

Baxter House
- Repair the area around the floor drain.
- Replace the plumbing pipes.
- Provide an allowance to replace the water heater.
- Provide an allowance to replace the sump pump.

5.0 ELEVATOR SYSTEM

The main church building is served by one hydraulic elevator manufactured and serviced by Otis Elevator Company. The elevator cab finishes included plastic laminated panel walls and tile floors. The plastic laminated walls were observed to be worn (Photograph No. 53). The elevator certificate was displayed in the elevator (Photograph No. 54). We recommend that the interior of the elevator cab be refurbished.

The elevator equipment for the elevator is located in the undercroft (Photograph No. 55). The expected useful life of hydraulic elevator equipment is approximately 20 to 25 years with proper maintenance. We recommend that the elevator equipment be replaced.

The elevator was observed to be in generally fair condition. The following recommendations are presented for the elevator system:

- Refurbish the interior of the elevator cab.
- Replace the hydraulic elevator equipment.
6.0 LIFE SAFETY SYSTEM

Church Building

The main church building is not fully sprinklered; only the undercroft of the church is serviced by the sprinkler system (Photograph No. 56). The fire sprinkler pump is located in the fire pump room located in the undercroft (Photograph No. 57). The fire sprinkler pump control panel is manufactured by General Electric (Photograph No. 58). The sprinkler system was last inspected in October 2008 by Strickland Fire Protection Services. The sprinkler system was observed to be in generally good condition.

A fire alarm control panel for the main church building is located in the electrical room in the undercroft of the building (Photograph No. 59). An annunciator panel is located in the foyer of the church (Photograph No. 60).

Strobes, exit signs, fire extinguishers, pull stations, and alarm bells were observed throughout the building (Photograph Nos. 61 through 64). The alarm system is connected to a dialer panel that contacts Kastle Systems.

Fire hose connectors are located on the south side of the parish hall adjacent to the entrance and in the staircase to the undercroft (Photograph Nos. 65 and 66).

Baxter House

Strobes, exit signs, fire extinguishers, pull stations, and alarm bells were observed throughout Baxter House (Photograph Nos. 67 through 70). The alarm system at Baxter House in an internal system.

The life safety system was observed to be in generally fair condition. No recommendations are presented for the life safety system at either building at this time.

7.0 SUMMARY OF REMEDIAL WORK COSTS

The following table presents a summary of the opinions of approximate cost for the remedial work items identified. Remedial work items have been divided into categories for Years 1 through 10, and cover capital expenditure items only. General routine maintenance, repairs and replacement of parts, remodeling, and upgrades to systems not specifically noted, are not included.

In cases where our opinions of cost for remedial work are given, they are based on our engineering judgment and experience. Some costs have been developed using published information from RS Means Repair and Remodeling Cost Data, 28th Annual Edition. Actual costs may vary significantly from these opinions since the prices of labor, materials, availability and competitiveness of services are set by others. The costs do not consider inflation.

In general, items less than $500 in cost have been excluded, except for immediate repairs, or safety issues. As requested, items considered deferred or routine maintenance and items that can be replaced by in-house maintenance personnel have been excluded.
APPENDIX I

PHOTOGRAPHIC DOCUMENTATION
Photograph No. 1
Fan unit located in the mechanical room in the parish hall.

Photograph No. 2
Typical fan unit in the undercroft of the main church building.

Photograph No. 3
Fan unit located in closet F in the undercroft of the main church building.

Photograph No. 4
Typical condenser unit for the main church building.

Photograph No. 5
Condenser unit located on the south side of the parish hall.

Photograph No. 6
Condenser unit located on the south side of the parish hall.
Photograph No. 7
Condenser unit located on the south side of the parish hall.

Photograph No. 8
Radiator unit located in the undercroft of the main church building.

Photograph No. 9
Typical radiator located in the main church building.

Photograph No. 10
Baseboard radiator located in the conference room in the undercroft of the main church building.

Photograph No. 11
Boilers located in the mechanical room for the main church building.

Photograph No. 12
Boiler exhaust piping in the mechanical room.
Photograph No. 13
Pump in the main mechanical room in the undercroft of the main church building.

Photograph No. 14
Fan unit located on the first floor of Baxter House.

Photograph No. 15
Fan unit located on the third floor of Baxter House.

Photograph No. 16
Condenser unit located on the south side of Baxter House.

Photograph No. 17
Close-up of the condenser. Note that there is no dryer on the refrigerant line.

Photograph No. 18
Typical radiator located in Baxter House.
Photograph No. 19
Typical radiator located in Baxter House.

Photograph No. 20
Boiler located in the basement of Baxter House.

Photograph No. 21
Through-the-wall air-conditioning unit in a second floor office at Baxter House.

Photograph No. 22
Main electrical panel at the main church building.

Photograph No. 23
Main electrical cut-off switches in the main church building.

Photograph No. 24
Typical electrical panel located in the parish hall.
Photograph No. 25
Typical electrical panel located in the undercroft.

Photograph No. 26
Open electrical box in the mechanical room in the parish hall.

Photograph No. 27
Open electrical switch in the undercroft at the main church building.

Photograph No. 28
Damaged electrical outlet in the conference roofmin the main church building.

Photograph No. 29
Emergency power panel in the electrical room in the undercroft of the main church building.

Photograph No. 30
Typical light fixture in the nave.
Photograph No. 31
Main electrical entrance and panel in the basement at Baxter House.

Photograph No. 32
Holes in the electrical entrance panel at Baxter House.

Photograph No. 33
Open electrical box and uncapped wires at the electrical entrance at Baxter House.

Photograph No. 34
Open electrical box in the ceiling of the basement at Baxter House.

Photograph No. 35
Typical light fixture in the basement at Baxter House.

Photograph No. 36
Wall switch and outlets in the kitchen at Baxter House. Note the outlet is not a GFCI.
Photograph No. 37
Typical copper piping at the main church building.

Photograph No. 38
Leaking and damaged copper piping in the undercroft of the main church building.

Photograph No. 39
Typical piping under sinks at the main church building.

Photograph No. 40
Water heater in the kitchen at the parish hall.

Photograph No. 41
Water heater in the main mechanical room in the undercroft of the main church building.

Photograph No. 42
Compression tank for the water heater in the main mechanical room.
Photograph No. 43
Main gas entrance and meter at the main church building.

Photograph No. 44
Typical waste and supply piping at Baxter House.

Photograph No. 45
Typical waste piping in the basement of Baxter House.

Photograph No. 46
Leaking waste piping exposed by a damaged ceiling on the first floor at Baxter House.

Photograph No. 47
Cast iron waste piping in the basement of Baxter House.

Photograph No. 48
Typical pipe work in the basement of Baxter House.
Photograph No. 49
Damaged concrete area around the drain on the south side of Baxter House.

Photograph No. 50
Water heater located in the basement at Baxter House.

Photograph No. 51
Sump pump located in the basement at Baxter House.

Photograph No. 52
Main gas entrance and meter in the basement at Baxter House.

Photograph No. 53
Elevator cab in the main church building.

Photograph No. 54
Elevator inspection certificate for the main church building.
Photograph No. 55
The elevator equipment room in the undercroft of the main church building.

Photograph No. 56
Sprinkler head in the undercroft of the main church building.

Photograph No. 57
Sprinkler valve in the undercroft of the main church building.

Photograph No. 58
Sprinkler piping in the undercroft of the main church building.

Photograph No. 59
Fire alarm control panel in the electrical room of the main church building.

Photograph No. 60
Fire annunciator panel located in the foyer if the main church building.
Typical fire alarm bell and strobe in the main church building.

Typical exit sign, strobe, and bell for the main church building.

Typical fire extinguisher in the main church building.

Fire alarm bell on the exterior of the main church building.

Fire hose connector located in the stairwell to the undercroft in the main church building.

Fire hose connector on the exterior of the parish hall.
Photograph No. 67
Typical pull station and fire extinguisher in Baxter House.

Photograph No. 68
Alarm bell, pull station, and strobe in Baxter House.

Photograph No. 69
Typical exit sign, alarm bell, and strobe in Baxter House.

Photograph No. 70
Typical fire extinguisher in Baxter house.
The table presents a summary of the opinions of approximate cost for the remedial work items identified. Remedial work items have been divided into categories for Immediate Work, and Recommended Capital Repairs in Years 1 through 10, and cover capital expenditure items only. General routine maintenance, repairs and replacement of parts, remodeling and carpeting of the interior, and upgrades to systems not specifically noted, are not included.

In cases where our opinions of cost for remedial work are given, they are based on our engineering judgment and experience. Some costs have been developed using published information from RS Means Repair and Remodeling Cost Data, 28th Annual Edition and Means ADA Compliance Price Guide, 1st Edition. Actual costs may vary significantly from these opinions since the prices of labor, materials, availability and competitiveness of services are set by others.
Table of Remedial Work Items

St. Mark's Capitol Hill
Baxter House
Washington, DC

| Building Component | Repair | Quantity | Unit Rate | Immediate Work | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Year 6 | Year 7 | Year 8 | Year 9 | Year 10 |
|--------------------|--------|----------|-----------|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| | | | | | | | | | | | | | |
| **Mechanical System** | | | | | | | | | | | | | |
| Replace the fan units. | 2 EA | $4,000 | | | | $8,000 | | | | | | | | $8,000 |
| Replace the condenser unit with two separate units. | 2 EA | $3,000 | | | | $6,000 | | | | | | | | $6,000 |
| Replace the boiler. | 1 EA | $8,000 | | | | $8,000 | | | | | | | | $8,000 |
| **Electrical System** | | | | | | | | | | | | | | |
| Upgrade the electrical system. | 1 LS | $10,000 | | | | | | | | | | | | $10,000 |
| **Plumbing System** | | | | | | | | | | | | | | |
| Repair the area around the floor drain. | 1 LS | $3,000 | | | | $3,000 | | | | | | | | $3,000 |
| Replace the plumbing pipes. | 1 LS | $10,000 | | | | $10,000 | | | | | | | | $10,000 |
| Provide an allowance to replace the water heater. | 1 EA | $1,000 | | | | | $1,000 | | | | | | | $1,000 |
| Provide an allowance to replace the sump pump. | 1 EA | $500 | | | | | | $500 | | | | | | $500 |
| **Life Safety System** | | | | | | | | | | | | | | |
| None. | | | | | | | | | | | | | | |

| Annual Costs (Uninflated) | $0 | $23,000 | $500 | $1,000 | $0 | $22,000 | $0 | $0 | $0 | $0 | $0 | $0 | $0 | $46,500 |

The table presents a summary of the opinions of approximate cost for the remedial work items identified. Remedial work items have been divided into categories for Immediate Work, and Recommended Capital Repairs in Years 1 through 10, and cover capital expenditure items only. General routine maintenance, repairs and replacement of parts, remodeling and carpeting of the interior, and upgrades to systems not specifically noted, are not included.

In cases where our opinions of cost for remedial work are given, they are based on our engineering judgment and experience. Some costs have been developed using published information from RS Means Repair and Remodeling Cost Data, 28th Annual Edition and Means ADA Compliance Price Guide, 1st Edition. Actual costs may vary significantly from these opinions since the prices of labor, materials, availability and competitiveness of services are set by others.